日本特a级猛片_在线观看AV免费网址_偷拍精偷拍精品欧洲亚洲_18禁无码永久免费无限

圖片名稱

新聞資訊

【文獻(xiàn)研讀】石杉堿甲通過抑制內(nèi)皮細(xì)胞焦亡改善自發(fā)性蛛網(wǎng)膜下腔出血后的神經(jīng)功能缺損

日期:

2024年06月03日 10:30


近期《Huperzine A ameliorates neurological deficits after spontaneous subarachnoid hemorrhage through endothelial cell pyroptosis inhibition》在 Acta Biochimica et Biophysica Sinica(生物化學(xué)與生物物理學(xué)報)發(fā)表。該研究由西湖大學(xué)醫(yī)學(xué)院附屬杭州市第一人民醫(yī)院神經(jīng)外科和體檢中心團隊完成。該研究表明,石杉堿甲注射液可抑制內(nèi)皮細(xì)胞焦亡、抗氧化應(yīng)激,改善蛛網(wǎng)膜下腔出血(SAH)后的早期腦損傷。

 

 

 

背景介紹

Subarachnoid hemorrhage (SAH) is a severe stroke type [1,2] mainly caused by aneurysm rupture and is characterized by high morbidity and mortality [3]. Additionally, survivors often have cognitive impairments affecting patients’ daily functionality, labor capacity, and quality of life [4]. Early brain injury within 72 h is considered to be the main cause of poor prognosis in SAH patients [5]. Alleviating early brain damage contributes to the improvement on survival rate and prognosis of SAH patients [6,7]. Therefore, inhibiting early brain damage in SAH patients is an important therapeutic strategy for improving the prognosis of SAH patients. It has been revealed that neuronal apoptosis and blood-brain barrier (BBB) destruction are the hallmark events of early brain injury after SAH, are closely related to irreversible acute brain injury after SAH, and are important factors for poor prognosis in SAH patients [8,9]. In addition, the increased permeability of the BBB allows immune molecules to migrate to the brain parenchyma, which further exacerbates brain injury. It is suggested that inhibiting BBB dysfunction can effectively ameliorate early brain injury after SAH and is an important therapeutic method for improving the prognosis of SAH patients.

蛛網(wǎng)膜下腔出血(SAH)是一種嚴(yán)重的腦卒中類型[1,2],主要由顱內(nèi)動脈瘤破裂引起,其特點是高致殘率和高死亡率[3]。此外,幸存者通常存在認(rèn)知障礙,影響患者的日常功能、勞動能力和生活質(zhì)量[4]。SAH后72 小時內(nèi)的早期腦損傷被認(rèn)為是影響SAH 患者預(yù)后不良的主要原因之一[5]。減輕早期腦損傷有助于改善 SAH 患者的生存率和預(yù)后[6,7]。因此,抑制 SAH 患者早期腦損傷是改善 SAH 患者預(yù)后的重要治療策略。研究表明,神經(jīng)元凋亡和血腦屏障(BBB)破壞是 SAH后早期腦損傷的標(biāo)志性事件,與 SAH后不可逆的急性腦損傷密切相關(guān),是 SAH 患者預(yù)后不良的重要因素[8,9]。此外,血腦屏障的通透性增加使免疫分子遷移到腦實質(zhì),這進(jìn)一步加劇了腦損傷。研究表明,抑制血腦屏障功能障礙可有效改善 SAH后的早期腦損傷,是改善 SAH 患者預(yù)后的重要方法。

 

材料和方法

Animal handling

SPF male SD rats were fed according to standard animal care proposal. After one week of adaptive feeding, the following treatments were carried out: (1) sham group: SD rats were subjected to a sham operation; (2) model group: SD rats were treated for SAH, and saline was applied intraperitoneally; and (3) treatment group: SD rats were treated for SAH, and Huperzine A (0.1 mg/kg, WEPON, Drug Approval Number: H20183340) was applied intraperitoneally. The procedure was as follows: after the SD rats were anesthetized, 0.35 mL of fresh autologous blood (20 s) without heparin was slowly injected into the anterior cistern of the optic chiasm, and the animals were kept head down at 30℃ for 20 min. The rats were immediately injected with 2 mL of normal saline and returned to the cage alone. The body temperature was maintained at 37°C. In the sham group, the SD rats (male, 250 -300 g) were injected with normal saline instead of autologous blood; in the model group and treatment group, the placebo (saline) and Huperzine A were administered intraperitoneally 12 h after autologous blood injection.

SPF 雄性 SD 大鼠按照標(biāo)準(zhǔn)動物飼養(yǎng)方案進(jìn)行飼養(yǎng)。適應(yīng)性飼養(yǎng)一周后,進(jìn)行以下處理:(1)假手術(shù)組:SD 大鼠進(jìn)行假手術(shù)操作;(2)模型組:SD 大鼠誘導(dǎo)蛛網(wǎng)膜下腔出血(SAH),腹腔注射生理鹽水;(3)治療組:SD 大鼠誘導(dǎo) SAH, 腹腔注射石杉堿甲(0.1 mg/kg,萬邦德制藥集團有限公司,藥品批準(zhǔn)號:H20183340)。操作步驟如 下:SD 大鼠麻醉后,緩慢注入不含肝素的新鮮自體血(20 s,0.35 mL)至視交叉前池,將動物頭向下保持在 30°C 下20 分鐘。立即注射2 mL生理鹽水, 將大鼠單獨放回籠中,體溫維持在 37°C。假手術(shù)組中,SD大鼠(雄性,250-300 g)注射生理鹽水代替自體血。在模型組和治療組中,大鼠自體血注射后 12 小時分別經(jīng)腹腔注射安慰劑(生理鹽水)和石杉堿甲。 

 

 

研究結(jié)果

一、石杉堿甲改善 SAH 大鼠神經(jīng)功能缺陷和腦組織神經(jīng)元凋亡。

 

 

二、石杉堿甲通過改善 SAH 大鼠緊密連接蛋白的表達(dá)來抑制 BBB 功能障礙。

 

三、石杉堿甲改善了 SAH 大鼠腦組織內(nèi)皮細(xì)胞的焦亡。

 

四、石杉堿甲改善了 SAH 大鼠腦組織的氧化應(yīng)激,抑制了氧化應(yīng)激介導(dǎo)的內(nèi)皮細(xì)胞焦亡。 

 

五、石杉堿甲抑制 SAH 大鼠腦組織內(nèi)皮細(xì)胞 NF-κB 通路的激活。

 

 

結(jié)論:植物單體石杉堿甲在肥胖相關(guān)的認(rèn)知障礙[32]、阿爾茨海默病和其他形式的癡呆[33]以及重復(fù)性創(chuàng)傷性腦損傷[34]中起神經(jīng)保護作用。在這項研究中,我們發(fā)現(xiàn)石杉堿甲可以顯著改善 SAH 大鼠的神經(jīng)功能缺損評分和平衡評分。據(jù)報道,石杉堿甲對神經(jīng)損傷的改善作用與其對神經(jīng)元凋亡的抑制作用有關(guān)[17,18]。在這項研究中,我們發(fā)現(xiàn)石杉堿甲可以顯著降低腦組織中神經(jīng)元凋亡的水平。我們的結(jié)果表明,石杉堿甲可以抑制神經(jīng)細(xì)胞凋亡,改善 SAH 后的早期神經(jīng)功能缺損。石杉堿甲已在多項臨床研究中被證明是安全的。本研究補充了石杉堿甲在神經(jīng)損傷疾病中的神經(jīng)保護功能,為 SAH 后早期腦損傷提供了新的潛在療法。

 

 

參考文獻(xiàn)

1. Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH. Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol. 2010; 68: 650-60.

2. Zhang X, Karuna T, Yao ZQ, Duan CZ, Wang XM, Jiang ST, et al. High wall shear stress beyond a certain range in the parent artery could predict the risk of anterior communicating artery aneurysm rupture at follow-up. J Neurosurg. 2018; 131: 868-75.

3. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017; 389: 655-66.

4. Plata-Bello J, Modrono C, Acosta-Lopez S, Perez-Martin Y, Marcano F, Garcia-Marin V, et al. Subarachnoid hemorrhage and visuospatial and visuoperceptive impairment: disruption of the mirror neuron system. Brain Imaging Behav. 2017; 11: 1538-47.

5. Suzuki H, Nakano F. To Improve Translational Research in Subarachnoid Hemorrhage. Transl Stroke Res. 2018; 9: 1-3.

6. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res. 2013; 4: 432-46.

7. Zhang H, He X, Wang Y, Sun X, Zhu L, Lei C, et al. Neuritin attenuates early brain injury in rats after experimental subarachnoid hemorrhage. Int J Neurosci. 2017; 127: 1087-95.

8. Lublinsky S, Major S, Kola V, Horst V, Santos E, Platz J, et al. Early blood-brain barrier dysfunction predicts neurological outcome following aneurysmal subarachnoid hemorrhage. EBioMedicine. 2019; 43: 460-72.

9. Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006; 28: 399-414.

10. Chang D, Liu J, Bilinski K, Xu L, Steiner GZ, Seto SW, et al. Herbal Medicine for the Treatment of Vascular Dementia: An Overview of Scientific Evidence. Evid Based Complement Alternat Med. 2016; 2016: 7293626.

11. Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G. Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochemistry Reviews. 2016; 15: 51-85.

12. Hao Z, Liu M, Liu Z, Lv D. Huperzine A for vascular dementia. Cochrane Database Syst Rev. 2009: CD007365.

13. Xing SH, Zhu CX, Zhang R, An L. Huperzine a in the treatment of Alzheimer's disease and vascular dementia: a meta-analysis. Evid Based Complement Alternat Med. 2014; 2014: 363985.

14. Yang G, Wang Y, Tian J, Liu JP. Huperzine A for Alzheimer's disease: a systematic review and meta-analysis of randomized clinical trials. PLoS One. 2013; 8: e74916.

15. Yue J, Dong BR, Lin X, Yang M, Wu HM, Wu T. Huperzine A for mild cognitive impairment. Cochrane Database Syst Rev. 2012; 12: CD008827.

16. Yu P, Dong WP, Tang YB, Chen HZ, Cui YY, Bian XL. Huperzine A lowers intraocular pressure via the M3 mAChR and provides retinal neuroprotection via the M1 mAChR: a promising agent for the treatment of glaucoma. Ann Transl Med. 2021; 9: 332.

17. Zhou J, Tang XC. Huperzine A attenuates apoptosis and mitochondria-dependent caspase-3 in rat cortical neurons. FEBS Lett. 2002; 526: 21-5.

18. Xiao XQ, Zhang HY, Tang XC. Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res. 2002; 67: 30-6.

19. Wang Y, Wei Y, Oguntayo S, Doctor BP, Nambiar MP. A combination of [+] and [-]-Huperzine A improves protection against soman toxicity compared to [+]-Huperzine A in guinea pigs. Chem Biol Interact. 2013; 203: 120-4.

20. Ruan Q, Hu X, Ao H, Ma H, Gao Z, Liu F, et al. The neurovascular protective effects of huperzine A on D-galactose-induced inflammatory damage in the rat hippocampus. Gerontology. 2014; 60: 424-39.

21. Zhang XS, Wu Q, Wu LY, Ye ZN, Jiang TW, Li W, et al. Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death Dis. 2016; 7: e2416.

22. Zhu Q, Enkhjargal B, Huang L, Zhang T, Sun C, Xie Z, et al. Aggf1 attenuates neuroinflammation and BBB disruption via PI3K/Akt/NF-kappaB pathway after subarachnoid hemorrhage in rats. J Neuroinflammation. 2018; 15: 178.

23. Yu LM, Zhang WH, Han XX, Li YY, Lu Y, Pan J, et al. Hypoxia-Induced ROS Contribute to Myoblast Pyroptosis during Obstructive Sleep Apnea via the NF-kappaB/HIF-1alpha Signaling Pathway. Oxid Med Cell Longev. 2019; 2019: 4596368.

24. Zhang Y, Yin K, Wang D, Wang Y, Lu H, Zhao H, et al. Polystyrene microplastics-induced cardiotoxicity in chickens via the ROS-driven NF-kappaB-NLRP3-GSDMD and AMPKPGC-1alpha axes. Sci Total Environ. 2022; 840: 156727.

25. Mo J, Enkhjargal B, Travis ZD, Zhou K, Wu P, Zhang G, et al. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019; 20: 75-86.

26. Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother. 2019; 109: 726-33.

27. McLarnon JG. A Leaky Blood-Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer's Disease. Antioxidants (Basel). 2021; 11.

28. Qin W, Li J, Zhu R, Gao S, Fan J, Xia M, et al. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-kappaB pathway. Aging (Albany NY). 2019; 11: 11391-415.

29. Wu X, Zhang H, Qi W, Zhang Y, Li J, Li Z, et al. Nicotine promotes atherosclerosis via ROS-NLRP3-mediated endothelial cell pyroptosis. Cell Death Dis. 2018; 9: 171.

30. Wang Y, Guan X, Gao CL, Ruan W, Zhao S, Kai G, et al. Medioresinol as a novel PGC-1alpha activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARalpha-GOT1 axis. Pharmacol Res. 2021; 169: 105640.

31. Sul OJ, Ra SW. Quercetin Prevents LPS-Induced Oxidative Stress and Inflammation by Modulating NOX2/ROS/NF-kB in Lung Epithelial Cells. Molecules. 2021; 26.

32. Wang HY, Wu M, Diao JL, Li JB, Sun YX, Xiao XQ. Huperzine A ameliorates obesityrelated cognitive performance impairments involving neuronal insulin signaling pathway in mice. Acta Pharmacol Sin. 2020; 41: 145-53.

33. Damar U, Gersner R, Johnstone JT, Schachter S, Rotenberg A. Huperzine A as a neuroprotective and antiepileptic drug: a review of preclinical research. Expert Rev Neurother. 2016; 16: 671-80.

34. Mei Z, Zheng P, Tan X, Wang Y, Situ B. Huperzine A alleviates neuroinflammation, oxidative stress and improves cognitive function after repetitive traumatic brain injury. Metab Brain Dis. 2017; 32: 1861-9.

35. Okada T, Kawakita F, Nishikawa H, Nakano F, Liu L, Suzuki H. Selective Toll-Like Receptor 4 Antagonists Prevent Acute Blood-Brain Barrier Disruption After Subarachnoid Hemorrhage in Mice. Mol Neurobiol. 2019; 56: 976-85.

36. Okada T, Enkhjargal B, Travis ZD, Ocak U, Tang J, Suzuki H, et al. FGF-2 Attenuates Neuronal Apoptosis via FGFR3/PI3k/Akt Signaling Pathway After Subarachnoid Hemorrhage. Mol Neurobiol. 2019; 56: 8203-19.

37. Sabri M, Lass E, Macdonald RL. Early brain injury: a common mechanism in subarachnoid hemorrhage and global cerebral ischemia. Stroke Res Treat. 2013; 2013:394036.

38. Suzuki H. What is early brain injury? Transl Stroke Res. 2015; 6: 1-3.39. Sabri M, Ai J, Lass E, D'Abbondanza J, Macdonald RL. Genetic elimination of eNOS reduces secondary complications of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2013; 33: 1008-14.

40. Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015; 7: a020412.

41. Huang L, Chen Y, Liu R, Li B, Fei X, Li X, et al. P-Glycoprotein Aggravates Blood Brain Barrier Dysfunction in Experimental Ischemic Stroke by Inhibiting Endothelial Autophagy. Aging Dis. 2022; 13: 1546-61.

42. Heithoff BP, George KK, Phares AN, Zuidhoek IA, Munoz-Ballester C, Robel S. Astrocytes are necessary for blood-brain barrier maintenance in the adult mouse brain. Glia. 2021; 69: 436-72.

43. Zhang S, An Q, Wang T, Gao S, Zhou G. Autophagy- and MMP-2/9-mediated Reduction and Redistribution of ZO-1 Contribute to Hyperglycemia-increased Blood-Brain Barrier Permeability During Early Reperfusion in Stroke. Neuroscience. 2018; 377: 126-37.

44. Xu P, Tao C, Zhu Y, Wang G, Kong L, Li W, et al. TAK1 mediates neuronal pyroptosis in early brain injury after subarachnoid hemorrhage. J Neuroinflammation. 2021; 18: 188.

45. Xu P, Hong Y, Xie Y, Yuan K, Li J, Sun R, et al. TREM-1 Exacerbates Neuroinflammatory Injury via NLRP3 Inflammasome-Mediated Pyroptosis in Experimental Subarachnoid Hemorrhage. Transl Stroke Res. 2021; 12: 643-59.

46. Liu L, Wang N, Kalionis B, Xia S, He Q. HMGB1 plays an important role in pyroptosis induced blood brain barrier breakdown in diabetes-associated cognitive decline. J Neuroimmunol. 2022; 362: 577763.

47. Bellut M, Papp L, Bieber M, Kraft P, Stoll G, Schuhmann MK. NLPR3 inflammasome inhibition alleviates hypoxic endothelial cell death in vitro and protects blood-brain barrier integrity in murine stroke. Cell Death Dis. 2021; 13: 20.

48. Liang Y, Song P, Chen W, Xie X, Luo R, Su J, et al. Inhibition of Caspase-1 Ameliorates Ischemia-Associated Blood-Brain Barrier Dysfunction and Integrity by Suppressing Pyroptosis Activation. Front Cell Neurosci. 2020; 14: 540669.

49. Matz PG, Copin JC, Chan PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke. 2000; 31:2450-9.

50. Marzatico F, Gaetani P, Cafe C, Spanu G, Rodriguez y Baena R. Antioxidant enzymatic activities after experimental subarachnoid hemorrhage in rats. Acta Neurol Scand. 1993; 87: 62-6.

51. Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: Focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022; 13: 1039241.

52. Xiao XQ, Wang R, Han YF, Tang XC. Protective effects of huperzine A on betaamyloid(25-35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett. 2000; 286: 155-8.

53. Tao LX, Huang XT, Chen YT, Tang XC, Zhang HY. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol Sin. 2016; 37: 1391-400.

54. Xu Z, Wang Y. Huperzine A attenuates hepatic ischemia reperfusion injury via antioxidative and anti-apoptotic pathways. Mol Med Rep. 2014; 10: 701-6.

55. Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan H, et al. Netrin-1 alleviates subarachnoid haemorrhage-induced brain injury via the PPARgamma/NF-KB signalling pathway. J Cell Mol Med. 2019; 23: 2256-62.

56. Kolgazi M, Uslu U, Yuksel M, Velioglu-Ogunc A, Ercan F, Alican I. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat. Chem Biol Interact. 2013; 205: 72-80.

57. Sui X, Gao C. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms. Int J Mol Med. 2014; 33: 227-33.

 

 

聲明:

1.本新聞旨在分享學(xué)術(shù)前沿動態(tài),僅供醫(yī)療衛(wèi)生專業(yè)人士基于學(xué)術(shù)目的參閱,非廣告用途。

2.萬邦德制藥不對任何藥品和/或適應(yīng)癥作推薦。

相關(guān)推薦